End-to-end AI Chatbot

Published:

E2E-AI-Chatbot 🤖

PipelineInstallationUser InterfaceModelDatabaseSearchContact

Flake8 lint Stargazers MIT License LinkedIn

Pipeline

Current:

Next stage:

  • FastAPI & Gradio backend
  • Dockerize packages
  • Add UI ingest upload file
  • Add login page
  • Add docs
  • Nginx for http and https
  • K8s
  • CI/CD cloud (AWS/Azure)

Installation Requirements

  • Minimum CPU 8GiB RAM
  • Uncomment line 8 packages = [{include = “**”}] to use all internal packages (Passing Flake8)
  • Install packages and download GPT4All model by
    1. Run locally
      chmod u+x ./setup.sh
      bash ./setup.sh
      
  • Build MongoDB, Mongo Express, Logstash, Elasticsearch and Kibana
    docker compose -f docker-compose-service.yml up
    poetry run python app.py --host 0.0.0.0 --port 8071
    
    1. Run docker
      docker compose up
      

      User Interface App

      poetry run python app.py --host 0.0.0.0 --port 8071
      

      Run on: http://localhost:8071

  1. Chatbot:

  2. Ingest PDF:

(back to top)

Model

  1. GPT4ALL: Current best commercially licensable model based on GPT-J and trained by Nomic AI on the latest curated GPT4All dataset.

Database

  1. MongoDB Run on: http://localhost:27017
    poetry run python src/ingest_database.py --mongodb-host "mongodb://localhost:27017/" --data-path "static/pdf/"
    

    Mongo Compass (Windows)

Mongo Express

Run on: http://localhost:8081

Data Migration

Run on: http://localhost:9600

  1. Elasticsearch & Kibana
    poetry run python src/ingest_search.py --mongodb-host "mongodb://localhost:27017/" --es-host "http://localhost:9200/" --index_name "document"
    

    Elasticsearch run on: http://localhost:9200

Kibana run on: http://localhost:5601

Contact

(back to top)